Featured Post

Deep Learning IIT KGP Course through Youtube

Deep Learning IIT KGP

1. Introduction

2. Lecture 02 Feature Descriptor I 

3. Lecture 03 Feature Descriptor II 

4. Lecture 04 Bayesian Learning I 

5. Lecture 05 Bayesian Learning II 

6. Lecture 06 Discriminant Function I 

7. Lecture 07 Discriminant Function II 

8. Lecture 08 Discriminant Function III 

9. Lecture 09 Linear Classifier

10. Lecture 10 Linear Classifier II

11. Lecture 11 Support Vector Machine I

12. Lecture 12 Support Vector Machine II

13. Lecture 13 Linear Machine

14. Lecture 14 Multiclass Support Vector Machine I

15. Lecture 15 Multiclass Support Vector Machine II

16. Lecture 16 Optimization

17. Lecture 17 Optimization Techniques in Machine Learning

18. Lecture 18 Nonlinear Functions

19. Lecture 19 Introduction to Neural Network

20. Lecture 20 Neural Network II

21. Lecture 21 Multilayer Perceptron

22. Lecture 22 Multilayer Perceptron II

23. Lecture 23 Backpropagation Learning

24. Lecture 24 Loss Function

25. Lecture 25 Backpropagation Learning Example

26. Lecture 26 Backpropagation Learning Example II

27. Lecture 27 Backpropagation Learning Example III

28. Lecture 28 Autoencoder

29. Lecture 29 Autoencoder Vs PCA I

30. Lecture 30 Autoencoder Vs PCA II

31. Lecture 31 Autoencoder Training

32. Lecture 32 Autoencoder Variants I

33. Lecture 33 Autoencoder Variants II

34. Lecture 34 Convolution

35. Lecture 35 Cross Correlation

36. Lecture 36 CNN Architecture

37. Lecture 37 MLP versus CNN, Popular CNN Architecture LeNet

38. Lecture 38 Popular CNN Architecture AlexNet

39. Lecture 39 Popular CNN Architecture VGG16, Transfer Learning

40. Lecture 40 Vanishing and Exploding Gradient

41. Lecture 41 GoogleNet

42. Lecture 42 ResNet, Optimisers Momentum Optimiser

43. Lecture 43 Optimisers Momentum and Nesterov Accelerated Gradient NAG Optimiser

44. Lecture 44 Optimisers Adagrad Optimiser

45. Lecture 45 Optimisers RMSProp, AdaDelta and Adam Optimiser

46. Lecture 46 Normalization

47. Lecture 47 Batch Normalization I

48. Lecture 48 Batch Normalization II

49. Lecture 49 Layer, Instance, Group Normalization

50. Lecture 50 Training Trick, Regularization,Early Stopping

51. Lecture 51 Face Recognition

52. Lecture 52 Deconvolution Layer

53. Lecture 53 Semantic Segmentation I

54. Lecture 54 Semantic Segmentation II

55. Lecture 55 Semantic Segmentation III

56. Lecture 56 Image Denoising

57. Lecture 57 Variational Autoencoder

58. Lecture 58 Variational Autoencoder II

59. Lecture 59 Variational Autoencoder III

60. Lecture 60 Generative Adversarial Network





******************************************************** 
All the lecture slide has been uploaded in the Youtube channel. If you like the lectures, I'd like to request you to subscribe the channel and like the video.

Thanking you.

Comments

Search This Blog